Problem 7.6. Critical load by the Rayleigh-Ritz method

The bottom end of a column is built-in, the top is hinged. It is subjected to a concentrated force at the top. Determine the critical load and the buckling length with the Rayleigh-Ritz method! Assume the solution in the form of a fourth order polynomial which satisfies the geometrical boundary conditions.

Solve Problem

Solve

Coefficient for the critical load, λNoEIL2=

Coefficient for the buckling length, ν=

Do you need help?

Steps
Step by step

Follow steps of Example 7.7.

Step 1.  Assume the displacement function in the form of a forth order polynomial. Set constants to satisfy the geometrical boundary conditions.

Check displacement function

v(x)=C0+C1x+C2x2+C3x3+C4x4

From the geometrical boundary conditions, the following constants can be determined:

v(0)=0      C0=0dvdx=0      C1=0v(L)=0      C2=C3LC4L2

The displacement function is:

v(x)=C3x3Lx2+C4x4L2x2

Step 2.  Write the potential energy function.

Check potential energy

The strain energy is

Eq.(7-110)
U=12EI0Lκ2dx=12EI0Ldv2dx2dx=12EI0LC36x2L+C412x22L22dx=   =12EI0LC326x2L2+C4212x22L22+2C3C46x2L12x22L2dx=   =12C324EIL3+12C42845EIL5+C3C48EIL4

The work done by the external top force on the top displacement is

See Figure 7.54 and Eq.(7-113)
W=12λNo0Lv2(x)dx=12λNo0LC33x22Lx+C44x32L2x2dx=   =12λNo215C32L5+44105C42L7+715C3C4L6

After substituting the assumed deflection function the potential energy is:

π=U+W=12EIC324L3+12C42845L5+C3C416L412λNo215C32L5+44105C42L7+715C3C4L6

Step 3.  Determine the remaining constants from the stationary condition of the potential energy.

Check constants

The derivatives of the potential energy with respect to the constants of the deflection function must be zero:

Eqs.6-97) and (6-98)
π(C3,C4)=U+W=statπC3=C34EIL3+C48EIL4λNo215C3L5λNo730C4L6=0πC4=C38EIL4+C4845EILλNo44105C4L72λNo730C3L6=0

The above equations result in the following eigenvalue problem:

4EIL2λNo2158EIL2λNo7308EIL2λNo730845EIL2λNo44105C3C4L=00  

For the nontrivial solution the determinant of the coefficient matrix must be zero, and the eigenvalue, λ can be expressed:

det4EIL2λNo2158EIL2λNo7308EIL2λNo730845EIL2λNo44105=0 4EIL2λNo215845EIL2λNo441058EIL2λNo7302=0   λNo22154410572302λNoEIL2215845+4410542×8730+EI2L4484582=0 λNo=20.92EIL2

Step 4.  Give the buckling length.

Check buckling length

Eq.(7-29)
λNo=20.92EIL2=π2EIνL2      ν=π20.92=0.6870.7

Results
Worked out solution

Follow steps of Example 7.7.

The displacement function is assumed to be in the form of a forth order polynomial.

v(x)=C0+C1x+C2x2+C3x3+C4x4

From the geometrical boundary conditions, the following constants can be determined:

v(0)=0      C0=0dvdx=0      C1=0v(L)=0      C2=C3LC4L2

Now the displacement function has the following form:

v(x)=C3x3Lx2+C4x4L2x2

The strain energy is

Eq.(7-110)
U=12EI0Lκ2dx=12EI0Ldv2dx2dx=12EI0LC36x2L+C412x22L22dx=   =12EI0LC326x2L2+C4212x22L22+2C3C46x2L12x22L2dx=   =12C324EIL3+12C42845EIL5+C3C48EIL4

The work done by the external top force on the top displacement is

See Figure 7.54 and Eq.(7-113)
W=12λNo0Lv2xdx=12λNo0LC33x22Lx+C44x32L2x2dx=   =12λNo215C32L5+44105C42L7+715C3C4L6

After substituting the assumed deflection function the potential energy is:

π=U+W=12EIC324L3+12C42845L5+C3C416L412λNo215C32L5+44105C42L7+715C3C4L6

The remaining constants are determined from the stationary condition of the potential energy. The derivatives of the potential energy with respect to the constants of the deflection function must be zero:

Eqs.6-97) and (6-98)
π(C3,C4)=U+W=statπC3=C34EIL3+C48EIL4λNo215C3L5λNo730C4L6=0πC4=C38EIL4+C4845EILλNo44105C4L72λNo730C3L6=0

The above equations result in the following eigenvalue problem:

4EIL2λNo2158EIL2λNo7308EIL2λNo730845EIL2λNo44105C3C4L=00  

For the nontrivial solution the determinant of the coefficient matrix must be zero, and the eigenvalue, λ can be expressed:

det4EIL2λNo2158EIL2λNo7308EIL2λNo730845EIL2λNo44105=0 4EIL2λNo215845EIL2λNo441058EIL2λNo7302=0   λNo22154410572302λNoEIL2215845+4410542×8730+EI2L4484582=0 λNo=20.92EIL2

The buckling length is

Equation (7-29)
λNo=20.92EIL2=π2EIνL2      ν=π20.92=0.6870.7