Problem 5.6. Creep

The cross section given in Figure a) of Problem 5.4 is subjected to a centric, compression force. Determine the percentage change in stresses due to creep, when the creep coefficient is φ = 2. Apply:
a) the effective Young modulus,
b) the Trost model and
c) the Dischinger model.

Elastic modulus of concrete is Ec = 31 GPa, elastic modulus of steel is Es = 200 GPa. Assume uncracked concrete. Diameter of steel bars is Φ = 12 mm.

Solve Problem

Solve

Problem a)

Change in stress [%]:

Problem b)

Change in stress [%]:

Problem c)

Change in stress [%]:

Do you need help?

Steps

Step by step

Problem a)

Step 1. Calculate the section properties with the aid of the effective Young modulus.

Check section properties

The effective Young modulus is

Eq.(5-47)

Eeff=E1+φ=31×1031+2=10.33×103 MPa

The area of the homogeneous cross section at t = 0 is

Aeo=Ac+EsEcAs=120000+20031452=1.229×105 mm2

The area of the homogeneous cross section at t = ∞ becomes

Eq.(5-52)

Ae=Ac+EsEeffAs=120000+20010.33452=1.288×105 mm2

Step 2. Determine stress at t = ∞.

Check stress

Eq.(5-54)

σc=σco1φEsEcAsAe      σcσco=1φEsEcAsAe=12200314521.29×105=0.9547=95.47%

Problem b)

Step 1. Calculate the section properties. Modify the effective Young modulus according to Trost’s model .

Check section properties

According to Trost’s model the effective Young modulus is

Eq.(5-48)

Eeff=E1+χφ=31×1031+0.8×2=11.92×103 MPa

The area of the homogeneous cross section at t = 0 is

Ac=300×400=1.2×105 mm2As=4ϕ2π4=122π=452 mm2Aeo=Ac+EsEcAs=120000+20031452=1.23×105 mm2

The area of the homogeneous cross section at t = ∞ is

Equation (5-52)

A=Ac+EsEeffAs=120000+20011.92452=1.276×105 mm2

Step 2. Determine stress at t = ∞.

Check stress

Eq.(5-63)

σc=σco1φEsEcAsA      σcσco=1φEsEcAsAeχ=12200314521.276×105=0.9542=95.42%

Problem c)

Step 1. Determine change in stress according to Dischinger model.

Check stress

Eq.(5-55)

σc=σcoe1Ac/Aeoφ     σcσco=e1Ac/Aeoφ=e11.2/1.232=0.9536=95.36%

where area of the homogeneous cross section was calculated in Problem a).

Results

Worked out solution

Problem a)

The effective Young modulus is

Eq.(5-47)

Eeff=E1+φ=31×1031+2=10.33×103 MPa

The area of the homogeneous cross section at t = 0 is

Aeo=Ac+EsEcAs=120000+20031452=1.229×105 mm2

The area of the homogeneous cross section at t = ∞ becomes

Eq.(5-52)

Ae=Ac+EsEeffAs=120000+20010.33452=1.288×105 mm2

Stress at t = ∞ results in

Eq.(5-54)

σc=σco1φEsEcAsAe      σcσco=1φEsEcAsAe=12200314521.29×105=0.9547=95.47%

Problem b)

In the calculation of the section properties the effective Young modulus is modified according to Trost’s model:

Eq.(5-48)

Eeff=E1+χφ=31×1031+0.8×2=11.92×103 MPa

The area of the homogeneous cross section at t = 0 is unchanged. The area of the homogeneous cross section at t = ∞ becomes

Eq.(5-52)

A=Ac+EsEeffAs=120000+20011.92452=1.276×105 mm2

Stress at t = ∞ results in:

Eq.(5-63)

σc=σco1φEsEcAsA      σcσco=1φEsEcAsAeχ=12200314521.276×105=0.9542=95.42%

Problem c)

Change in stress according to Dischinger model is

Eq.(5-55)

σc=σcoe1Ac/Aeoφ     σcσco=e1Ac/Aeoφ=e11.2/1.232=0.9536=95.36%