Problem 3.15. Cantilever subjected to end torque

A cantilever beam (L = 0.5 m) is subjected to an end torque, T. The shear modulus is G = 80 GPa. (Neglect restrained warping.)
a) Determine the maximum allowable end torque for the given cross sections (Figures a)-d)). The shear strength is 120 MPa.
b) Determine the rotation of the beam end when the torque is T = 8 kNm for all the given cross sections (Figures a)-d))

Solve Problem

Solve

Cross section a)

a) Allowed torque, T [kNm]=

b) Rotation of beam end ψ [1/m]=

Cross section b)

a) Allowed torque, T [kNm]=

b) Rotation of beam end ψ [1/m]=

Cross section c)

a) Allowed torque, T [kNm]=

b) Rotation of beam end ψ [1/m]=

Cross section d)

a) Allowed torque, T [kNm]=

b) Rotation of beam end ψ [1/m]=

Do you need help?

Steps

Step by step

Step 1. Calculate torsional stiffness of the cross sections 

Step 2. Express allowed torque from the maximum shear stress 

Cross section a)

Check torsional stiffness

GIt=GI0=GπR42=80×103π×2542=4.909×1010 Nmm2

Eq.(3-79)

Check allowed torque

 T=GItϑτmax=ϑGR=TGItGR=f   TallowedTallowed=fGRGIt=12080×103×254.909×1010=2.945×106 Nmm=2.945 kNm
Figure 3.51. and Eq.(3-79)

Cross section b)

Check torsional stiffness

 Assuming thin walled cross section:GIt=G2tRt23π=80×103×2×225223π=1.39×1010 Nmm2Assuming thick walls:GIt=GR4π2Rt4π2=80×103254π22524π2=1.39×1010 Nmm2

The results are close to each other, thus both approximations of can be used.

Eqs.(3-79) and (3-112)

Check allowed torque

 T=GItϑτmax=ϑGR=TGItGR=f   TallowedTallowed=fGRGIt=12080×103×251.39×1010=8.35×105 Nmm=0.835 kNm

Cross section c)

Check torsional stiffness

 

GIt=Gc2ba3=80×103×0.196×75×503=1.47×1011 Nmm2

where factor, c2 = 0.196 belongs to the ratio b/a = 1.5.

See Table 3.9 and Eq.(3-95)

Check allowed torque

 τmax=Tc1ba  TallowedTallowed=fc1ba2=120×0.231×75×502=5.198×106 Nmm=5.198 kNm

where factor, c 1= 0.231 belongs to the ratio b/a = 1.5.

See Table 3.9 and Eq.(3-96)

Cross section d)

Check torsional stiffness

GIt=Gk15bktk33=80×103×213.5×333+257×333+87×333=1.641×108 Nmm2
See Eq.(3-100)

Check allowed torque

 τmax=ϑGt=TGItGt TallowedTallowed=fGtGIt=12080×103×31.641×108=8.208×104 Nmm=0.08208 kNm
Figure 3.51 and Eq.(3-79)

Step 3. Calculate the rotation of the beam end for the given torque.

Cross section a)

Check rotation

The torque and rate of twist functions are constant along the beams length. Thus the rotation of the beam end results in the rate of twist multiplied by the beam’s length:

See geometrical equation in Table 3.7.

ϑ=dψdx=TGIt      ψ=ϑL=TGItL=8×1064.909×1010500=0.0815

Cross section b)

Check rotation

ϑ=dψdx=TGIt      ψ=ϑL=TGItL=8×1061.39×1010500=0.287

See geometrical equation in Table 3.7.

Cross section c)

Check rotation

ϑ=dψdx=TGIt      ψ=ϑL=TGItL=8×1061.47×1011500=0.0272

See geometrical equation in Table 3.7.

Cross section d)

Check rotation

ϑ=dψdx=TGIt      ψ=ϑL=TGItL=8×1061.641×108500=24.37

See geometrical equation in Table 3.7.

Results

Show worked out solution

Problem a)

First the torsional stiffnesses of each cross sections are calculated. Then the allowed torque is expressed from the maximum shear stress.

Cross section a)

GIt=GI0=GπR42=80×103π×2542=4.909×1010 Nmm2

Eq.(3-79)
T=GItϑτmax=ϑGR=TGItGR=f   TallowedTallowed=fGRGIt=12080×103×254.909×1010=2.945×106 Nmm=2.945 kNm
Figure 3.51.

Cross section b)

 Assuming thin walled cross section:GIt=G2tRt23π=80×103×2×225223π=1.39×1010 Nmm2Assuming thick walls:GIt=GR4π2Rt4π2=80×103254π22524π2=1.39×1010 Nmm2

The results are close to each other, thus both approximations of can be used.

Eqs.(3-79) and (3-112)
 T=GItϑτmax=ϑGR=TGItGR=f   TallowedTallowed=fGRGIt=12080×103×251.39×1010=8.35×105 Nmm=0.835 kNm

Cross section c) 

GIt=Gc2ba3=80×103×0.196×75×503=1.47×1011 Nmm2

where factor, c2 = 0.196 belongs to the ratio b/a = 1.5.

See Table 3.9 and Eq.(3-95)
 τmax=Tc1ba  TallowedTallowed=fc1ba2=120×0.231×75×502=5.198×106 Nmm=5.198 kNm

where factor, c 1= 0.231 belongs to the ratio b/a=1.5.

See Table 3.9 and Eq.(3-96)

Cross section d)

GIt=Gk15bktk33=80×103×213.5×333+257×333+87×333=1.641×108 Nmm2

See Eq.(3-100)
 τmax=ϑGt=TGItGt TallowedTallowed=fGtGIt=12080×103×31.641×108=8.208×104 Nmm=0.08208 kNm
Figure 3.51 and Eq.(3-79)

Problem b)

The torque and rate of twist functions are constant along the beams length. Thus the rotation of the beam end results in the rate of twist multiplied by the beam’s length. The rotation of the beam end for the given torque is given below for the different cross sections.

See geometrical equation in Table 3.7.

Cross section a)

ϑ=dψdx=TGIt      ψ=ϑL=TGItL=8×1064.909×1010500=0.0815

Cross section b)

ϑ=dψdx=TGIt      ψ=ϑL=TGItL=8×1061.39×1010500=0.287

Cross section c)

ϑ=dψdx=TGIt      ψ=ϑL=TGItL=8×1061.47×1011500=0.0272

Cross section d)

ϑ=dψdx=TGIt      ψ=ϑL=TGItL=8×1061.641×108500=24.37