Problem 2.16. Infinite half space

An infinite half space is subjected to two concentrated loads shown in the Figure. The values of the loads are F1 = F2 = F = 250 kN/m, their distance is 2a = 2.4 m. Calculate the stresses in points 1-3 with the application of superposition and the Boussinesq solution. Name the special stress-state at each point. Check the resistance in Point 3 with the Rankine, Tresca and von Mises (HMH) failure criteria, if f = 200 kN/m2.

Solve Problem

Solve

Point 1

Radial stress, σr kN/m2 =

Point 2

Radial stress, σr kN/m2 =

Point 3

Radial stress, σr kN/m2 =

Failure load from the relevant failure criterion (minimum failure load of Rankine, Tresca and von Mises criterion), Ft [kN]

Do you need help?

Steps

Step by step

Similar problem is solved in Example 2.13.

Point 1

Step 1. Calculate radial stress from load F1 using the Boussinesq formula. 

See Figure 2.34.

Check stress

The distance of Point 1 from the point of application of load F1 is 2a. The angle between the axis of the load and the polar coordinate axis, r is 45°.

σr,11=2Fπ2acos45°=2×250π×2×1.222=46.89kNm2  (compression) 

Step 2. Calculate radial stress from load F2 using the Boussinesq formula. 

Check stress

Axis r is perpendicular to the load’s axis, thus no stress arise from F2

Step 3. Give total stresses of Point 1. Illustrate stress’ direction. Name the stress state of the point.

Check total stress

σr1=σr,11+0=46.89kNm2  (compression) 

The point is subjected to uniaxial compression.

Point 2

Step 1. Calculate radial stress from load F1  and F1 using the Boussinesq formula. 

Check total stress

φ= 90° for both loads, thus no stress arises at point 2 (cos 90o = 0, Boussinesq formula results in zero stress).

Point 3

Step 1. Calculate radial stress from load F1 using the Boussinesq formula. 

Check stress

The distance of Point 3 from the point of application of load F1 is a. The angle between the axis of the load and the polar coordinate axis, r is 135°.

See Figure 2.34.

σr,13=2Fπacos135°=2×250π×1.222=93.78kNm2  (tension) 

Step 2. Calculate radial stress from load F2 using the Boussinesq formula. 

Check stress

The distance of Point 3 from the point of application of load F2 is a. The angle between the axis of the load and the polar coordinate axis, r is -135°.

σr,23=2Fπacos(135°)=2×250π×1.222=93.78kNm2  (tension) 

Step 3. Summarize stresses of Point 3 arising from loads F1 and F2. Illustrate stress’ direction. Name the stress state of the point.

Check total stress

σr3=σr,13+σr,23=187.56kNm2  (tension) 

The point is subjected to uniaxial tension.

Step 4. Check resistance with Rankine failure criterion.

Check Rankine criterion

Equation

Eq.(2-22)
σ1=σr3=187.56 kNm2f=200kNm2 

σ2=0

The material is safe. The failure load is

f=σ1max=2Ftπacos135°2Ftπacos135°=22Ftπa22    Ft=fπa42/2=200π×1.242/2=266.57 kN

Step 5. Check resistance with Tresca failure criterion.

Check Tresca criterion

Eq.(2-23)

σ1=σr1=187.56 kNm2200 kNm2σ1=0τmax=σ12=93.78 kNm2f2=100kNm2 

The material is safe. The failure load is equivalent to that of Rankine criterion:

f=σ1max=22Ftπacos135° f2=τmax=σ1max2     Ft=fπa42/2=200π×1.242/2=266.57 kN

Step 6. Check resistance with von Mises failure criterion.

Check von Mises criterion

Eq.(2-24)

σ12+σ22σ1σ2=σr2=35178.8 kN2m4f2=40000kN2m4

The material is safe. The failure load is

f2=σ12+σ22σ1σ2=σr2        Ft=fπa42/2=200π×1.242/2=266.57 kN

The failure load results in the same values for all the failure criteria.

Results

Worked out solution

Similar problem is solved in Example 2.13.

Point 1

The distance of Point 1 from the point of application of load F1 is 2a. The angle between the axis of the load and the polar coordinate axis, r is 45°. Radial stress from load F1 is given by the Boussinesq formula:

See Figure 2.34.


σr,11=2Fπ2acos45°=2×250π×2×1.222=46.89kNm2  (compression) 

Radius of the stress arises from load F2 is perpendicular to the load’s axis, thus no stress arise from F2 (cos 90o = 0, Boussinesq formula results in zero). The total stress is

σr1=σr,11+0=46.89kNm2  (compression) 

The point is subjected to uniaxial compression.

Point 2

For Point 2 the rotation angle, φ= 90° for both loads, thus no stress arises at point 2 (cos 90o = 0, Boussinesq formula results in zero stress).

Point 3 

The distance of Point 3 from the point of application of load F1 is a. The angle between the axis of the load and the polar coordinate axis, r is 135°.

See Figure 2.34.

σr,13=2Fπacos135°=2×250π×1.222=93.78kNm2  (tension) 

The distance of Point 3 from the point of application of load F2 is a. The angle between the axis of the load and the polar coordinate axis, r is -135°. Radial stress from load F2 is:σr,23=2Fπacos(135°)=2×250π×1.222=93.78kNm2  (tension) 

Summation of the above stresses is

σr3=σr,13+σr,23=187.56kNm2  (tension) 

The point is subjected to uniaxial tension.

Check resistance with Rankine failure criterion.

Equation

Eq.(2-22)
σ1=σr3=187.56 kNm2f=200kNm2 

σ2=0

The material is safe. The failure load is

f=σ1max=2Ftπacos135°2Ftπacos135°=22Ftπa22    Ft=fπa42/2=200π×1.242/2=266.57 kN

Check resistance with Tresca failure criterion.

Eq.(2-23)

σ1=σr1=187.56 kNm2200 kNm2σ1=0τmax=σ12=93.78 kNm2f2=100kNm2

The material is safe. The failure load is equivalent to that of Rankine criterion:

f=σ1max=22Ftπacos135° f2=τmax=σ1max2     Ft=fπa42/2=200π×1.242/2=266.57 kN

Check resistance with von Mises failure criterion.

Eq.(2-24)

σ12+σ22σ1σ2=σr2=35178.8 kN2m4f2=40000kN2m4

The material is safe. The failure load is

f2=σ12+σ22σ1σ2=σr2        Ft=fπa42/2=200π×1.242/2=266.57 kN

The failure load results in the same values for all the failure criteria.