Problem 2.15. Boussinesq formula

   A plate is subjected to a line load which is distributed uniformly through the thickness. The upper edge, along the x coordinate, excluding the line load, is free and unloaded. Derive Boussinesq expressions in the x-y coordinate system applying the stress transformation. Give formulas for σx, σy and τxy.

Check the result with Footnote w in Section 2.3.2.
 

Solve Problem

Solve

Derive solution, and check results.

Show x-y stresses

σx=2P/hπx2y(x2+y2)2σy=2P/hπy3(x2+y2)2τxy=2P/hπxy2(x2+y2)2

Do you need help?

Steps

Step by step

Step 1. Write Boussinesq solution in polar coordinate system. Give stresses, σφ, σr, τ.

Check r-φ stresses

Only the radial stress is nonzero. 

σr=2P/hπrcosφσφ=τrφ=0

 

See Figure 2.34.

Step 2. Write stress transformation from r-φ coordinate system to x-y coordinate system. (Rotate r axis into x axis.)

Check x-y stresses

Angle of rotation is β = π/2-φ. Transformation is given below:

Eq.(2-9)

σxσyτxy=Tσσrσφτrφ=cos2βsin2β2cosβsinβsin2βcos2β2cosβsinβcosβsinβcosβsinβcos2βsin2β2P/hπrcosφ00

Step 3. Express r and the trigonometrical functions of the above transformation in the function of x and y coordinates.

Check expressions

r=x2+y2cosβ=xx2+y2sinβ=cosφ=yx2+y2

Step 4. Express stresses in xy coordinate system.

Check expressions

 

σxσyτxy=x2x2+y2y2x2+y22xyx2+y2y2x2+y2x2x2+y22xyx2+y2xyx2+y2xyx2+y2x2x2+y2y2x2+y22P/hπx2+y2yx2+y200σx=2P/hπx2+y2yx2+y2x2x2+y2=2P/hπx2+y22x2yσy=2P/hπx2+y2yx2+y2y2x2+y2=2P/hπx2+y22y3τxy=2P/hπx2+y2yx2+y2xyx2+y2=2P/hπx2+y22xy2

Results

Worked out solution

Boussinesq solution in polar coordinate system is

σr=2P/hπrcosφσφ=τrφ=0

See Figure 2.34.

Stress, σr is transformed from r-φ coordinate system to x-y coordinate system. Angle of rotation is β = π/2-φ. The transformation  has the following form

Eq.(2-9)

σxσyτxy=Tσσfσφτrφ=cos2βsin2β2cosβsinβsin2βcos2β2cosβsinβcosβsinβcosβsinβcos2βsin2β2P/hπrcosφ00

Now we write r and the trigonometrical functions of the above equation in the function of x and y coordinates.

r=x2+y2cosβ=xx2+y2sinβ=cosφ=yx2+y2

Substitution the above expressions into the stress transformation results in 

σxσyτxy=x2x2+y2y2x2+y22xyx2+y2y2x2+y2x2x2+y22xyx2+y2xyx2+y2xyx2+y2x2x2+y2y2x2+y22P/hπx2+y2yx2+y200σx=2P/hπx2+y2yx2+y2x2x2+y2=2P/hπx2+y22x2yσy=2P/hπx2+y2yx2+y2y2x2+y2=2P/hπx2+y22y3τxy=2P/hπx2+y2yx2+y2xyx2+y2=2P/hπx2+y22xy2